
Intro to R for beginners

Clara Cohen
Department of Linguistics
cpccohen@berkeley.edu

http://linguistics.berkeley.edu/~cpccohen/

D-Lab Workshops, Fall 2014

Contents

1 Terms and concepts 1

1.1 Objects . 1
1.2 Object types . 1
1.3 Commands . 1

2 How R works 1

2.1 Creating objects . 1
2.2 R Session control . 2

3 Vectors 2

3.1 Creating and inspecting vectors . 2
3.2 Vector classes . 3
3.3 Vectorization . 3
3.4 Not vectorization . 3
3.5 Combining vectors . 3
3.6 SUBSETTING VECTORS . 4

3.6.1 Conditions . 4

4 Dataframes 5

4.1 Creating dataframes . 5
4.2 Inspecting dataframes . 6
4.3 Subsetting dataframes . 6

4.3.1 Subsetting dataframes by condition . 7
4.4 Adding columns . 7
4.5 Merging dataframes . 8
4.6 Summarizing data patterns . 8

5 (Simple) plots 9

1 Terms and concepts

1.1 Objects

• x <- 3

• 3 -> pineapple

• MyVeryLongVariableName = 3

1

1.2 Object types

Data types

• Atomic vectors
� 3

� "cat"

• Vectors
� 3, 5.2, 4, 0

� "cat","dog","TRUE","35"

• Dataframes

Nums Things

3 "cat"

5.2 "dog"

4 "TRUE"

0 "35"

• (. . .)

Data classes

• Character
� "a","cat","big","32" etc.

• Numeric
� 23.1, 0, 54, 1, 5, 3 etc.

• Factor (aka categorical variable)
� "apple","orange","apple","orange"

etc.
• (. . .)

1.3 Commands

• Assignment: ->, <-, =

• Functions: <Function>(<argument>, <argument> . . .)

• Operators: +, -, �, *, etc.
• Conditions: 8 > 5, 3+5 == 8

2 How R works

2.1 Creating objects

Assignment x <- 3

12 -> y

apple = "fuji"

Saving output of commands total <- x + y

applelength <- nchar(apple) #nchar(): 1 character arg

What happens if you type the following commands?

• nchar(y)

• nchar("y")

• y - nchar(apple)

• y - nchar("apple")

• total = total -

applelength

• total - x

2.2 R Session control

Seeing objects that you've saved ls() #ls(): 0 args
Setting your working directory setwd("C:/Users/...") #setwd() : 1 arg
Learning your working directory getwd() #getwd(): 0 arg
Seeing what else is in the directory dir() # dir(): 0 arg

2

Quitting quit()

q() #quit() and q() are identical
Getting help ?quit

help(quit) #?quit and help(quit) are identical

Change your directory to someplace user-friendly. Quit your R-session, and then re-open it. See
what objects have been saved, and what their values are.

3 Vectors

3.1 Creating and inspecting vectors

Sequences y<-1:10

u <- seq(from = 5, to = 10, by = .23) #seq(): 3 args
Repetition w<-rep("fishsticks",3) #rep(): 2 args

q <- rep(y, 3)

Concatenation x <- c(1,2,3,4,5,6) #: c(): as many args as you like
z<-c("blue","rhinoceros","triangle")

huge <- c(675:659, z, rep("Spock",3))

Summarizing summary(y) #summary(): 1 arg
summary(z)

Finding length length(huge) #length(): 1 arg

Create the following vectors:
• Your name, repeated 4 times.
• The sequence of numbers from 5 to 90, in increments of 14.1. How long is it?

3.2 Vector classes

Character vectors z <- c("blue","rhinoceros","triangle", "triangle")

w <-rep("fishsticks",4)

Numeric vectors x <- c(1,2,3,4,5,6)

y <- 3:13

q <- rep(y, 3)

u <- seq(from = 5, to = 10, by = .23)

Factor vectors q <- as.factor(q) #as.factor(): 1 arg
w <- as.factor(w)

Changing vector class: y<- as.character(y) #as.character(): 1 arg
w <- as.character(w)

y <- as.numeric(y) #as.numeric(): 1 arg
q <- as.numeric(as.character(q)) #Careful with as.numeric()

on factors!

What does summary() do on the following vector classes?
• character (for example, w)
• numeric (for example, q)

3

• Factor (for example, z. You may need to turn it into a factor �rst.)

3.3 Vectorization

Doing the same thing to every element in a vector y + 3

nchar(z)

sqrt(x) #sqrt(): 1 numeric arg
Matching vectors element-by-element nchar(w) + nchar(z)

y + y

y * 2

Recycling smaller vectors when lengths are mismatched y + x

3.4 Not vectorization

Combining all elements in a vector in some way sum(y) #sum(): 1 numeric arg
mean(y) #mean(): 1 numeric arg
sd(y) #sd(): 1 numeric arg
min(y) #min(): 1 numeric arg
max(y) #max(y): 1 numeric arg

Sorting the vector sort(q) #sort(): 1 argument (1 optional)
sort(q, decreasing = TRUE)

• Turn y into a character vector and sort it. How are digits sorted when they are characters?
• Turn y into a numeric vector and sort it from highest to lowest.
• Sort huge in reverse alphabetical order

3.5 Combining vectors

Pasting one vector on the end of another c(x, y, z, w, q)

Getting only the elements in common, once intersect(x, y) #intersect(): 2 args
Getting all the elements in either vector, once union(x,y) # union(): 2 args

3.6 SUBSETTING VECTORS

Getting each element once unique(z) #unique(): 1 arg

All other subsets in R (vectors, dataframes, etc.) can be understood as a variation on the fol-
lowing syntax. Learn to love square brackets!

OBJECT[]

By position (aka index) huge[1] #The �rst element
huge[length(huge)] #The last element

4

Indexes can be vectors huge[1:5] #The �rst �ve elements
huge[c(1,5)] #The �rst and �fth elements
huge[seq(from = 1, to = length(huge), by = 3)] #Every third

element

Find the following elements of huge:
• The 15th element
• The 12th, �rst, and last element, in that order.

3.6.1 Conditions

Testing equality 5 == 5 # NOTE THE DOUBLE == !!
"cat" == "cat"

"cat" == "dog"

Testing inequality 10 < 10 # �less than�
10 <= 11 # �less than or equal to�
10 >= 12 # �greater than or equal to�
10 != 10 # �not equal to�

Testing containment 10 %in% c(10, 11, 12) # %in%: in the following vector
"cat" %in% c("dog", 10, "rat","McCoy")

Vectorization and conditions y > 5 #�Test each element in y for this condition"
huge == "Spock"

Logical vectors are strings of TRUE and FALSE. When you use a logical vector to subset an-
other vector of the same length, you get back only those elements for which their counterparts in
the logical vector have the value TRUE. Convince yourself of this:

• logic <- c(TRUE, FALSE,TRUE, FALSE,TRUE, FALSE,TRUE, FALSE,TRUE)

#Note the capitals, which signal logical values
• y[logic] #Get every other value in y, because every other value in logic was TRUE

When you test a vector for a condition, in fact you are making use of vectorization: each element
of the vector is tested for that condition. This operation returns a vector of TRUE and FALSE.
Therefore, the fastest way to get the values of a vector that meet a condition, is simply to put the
condition inside square brackets. Convince yourself of this:

• y[y > 5] #Returns only the values of y greater than 5
• huge[huge == "triangle"] #Returns only the values of huge that are "triangle"
• huge[huge %in% c("Spock", "rhinoceros")] #Returns only the values of huge

that are "Spock" or "rhinoceros"

Practice:
• R has a vector built in, called `letters.' Pull out only the vowels. (Hint: you can think of
vowels as a vector containing "a", "e", "i", "o", and "u".)

• Pull out the elements of q that are greater than 8

5

Combining conditions "cat" %in% c("cat" , "dog") & 5 > 2 # &: �and�
"cat" %in% c("cat" , "dog") & 5 < 2

"cat" %in% c("cat" , "dog") | 5 < 2 # | : �or�
10 = 11 | 5 < 2

Practice:
• Pull out the elements of q that are less than 12 and also have two characters
• Pull out the elements of q that meet either of the following two conditions: they are less than
4, OR (hint hint) their square is greater than 100

4 Dataframes

Dataframes are sets of vectors that have been glued together in rows and columns. Each row is a
vector, and each column is a vector.

4.1 Creating dataframes

By hand lets <- c("a","q","r","l","s","t","r","v", "a","a")

nums <- 53:62

df <- data.frame(letters = lets, numbers = nums) #data.frame(): as many
args as columns

Importing ratings <- read.csv("ratings.csv", header = TRUE)

crime <- read.table("crime.csv", sep = ",") # See help(read.table)
for full set of arguments

Create your own dataframe, with the following columns:
• The names of your immediate family members
• Their ages
• Their relation to you
Example:

name age relation

Sophie 62 mother

Doug 62 father

Clara 30 me

Phoebe 33 sister

Roy 3 nephew

Daniel 33 husband

4.2 Inspecting dataframes

Summarizing summary(df)

Getting size dim(df) # dim(): 1 arg
nrow(df) # nrow(): 1 dataframe arg

Seeing top head(df)

head(df , 3) # head(): 1 obligatory, 1 optional arg

6

Seeing bottom tail(df , 3) # tail(): exactly like head()
Seeing column names colnames(df) #colnames(): 1 arg
Changing column names colnames(df) <- c("AwsomeLetters", "integers")

colnames(df)[1] <- "letters"

Figure out the following information:
• How many rows are in ratings?
• What are the column names of ratings?
• What are the last 4 rows of crime?
• Change one of the column names in ratings.
• Using summary(), determine which columns in crime are numeric.

4.3 Subsetting dataframes

By position d[3 , 5] # TWO dimensions: [<row> , <column>]

d[, 1] # [, <column>]: Give ALL rows
d[5 ,] # [<row> ,]: Give ALL columns

Indices can be vectors d[c(1,3,5) , 2] # Give �rst, third, �fth row, and second column

By column name d$letters # <dataframe> $ <columnname>
d$integers

Column name in brackets d[3 , "letters"] #Element in third row, �letters� column
Multiple column names at once d[1 , c("letters" , "integers")] #Elements in �rst row,

in both �letters� and �integers� columns
Columns are vectors d$letters[1:3] # The �rst three items in the �letters� column

d$integers[nrow(d)] # The last item in the �integers� column
Three ways to pull out the same
element

d[3 , 1] #Third row, �rst column
d[3, "letters"] # Third row, "letters" column
d$letters[3] #Third element in �letters� column

Using ratings and crime, �gure out the following information:
• What is the meanFamiliarity value in the �rst row of ratings? Find it out in at least two ways.
• Pull out the �rst, eighth, and seventy-�fth word (i.e., the thing in the "Word" column), Do it
in at least two ways.

• Pull out the values in the Frequency, FamilySize, and Class columns for the �rst row in ratings
• Pull out the murder and assault rates for the �rst three rows in crime

4.3.1 Subsetting dataframes by condition

You can specify which rows of a dataframe you want by giving a vector of desired rows. This vector
can be a set of TRUE and FALSE values, which are speci�ed by a condition.

• �Give me only the rows for which the �integers� column is greater than 57:�
d[d$integers > 57 ,]

• �Give me the letters for which the value in the �integers� column is greater than 57:�
d[d$integers > 57 , "letters"] #COMMA!
d$letters[d$integers > 57] #No comma

• �Give me the integers for which the value in the �letters� column is "a":�
d[d$letters == "a", "integers"] #COMMA!

7

d$integers[d$letters == "a"] #No comma
• �Give me the letters for which the integer is less than 54 OR greater than 60:�
d[d$integer < 54 | d$integer > 60, "letters"] #COMMA!
d$letters[d$integer < 54 | d$integer > 60] #No comma

Using crime, �gure out the following information:
• The murder rate for California
• Which states have a murder rate higher than 11.25
• Which states have an assault rate less than 170, but a murder rate greater than 7.7
• Which states have an urban population percent rate that is exactly the median urban percent
rate

• Which states have a rape rate that is less than the median value, but an assault rate that is
higher than the median rate for assault

Using ratings, �gure out the following information:
• Which words are plants (Class column)
• Which words are complex (Complex column)
• Which words are both animals (Class column) AND complex
• Create a dataframe called "animals," which contains only the animal rows of ratings

4.4 Adding columns

By �at crime$greeting <- "hi"

crime$numbers <- 1:nrow(crime)

By vectorization crime$urban <- crime$urbanPop / 100

crime$lowAssault <- crime$assault - 20

crime$noAssault <- crime$assault - crime$assault]

Referring to other columns crime$assaultDif <- crime$assault - mean(crime$assault)

crime$murderRatio <- crime$murder / crime$assault

Add the following columns to ratings:
• The ratio of a word's meanSizeRating to its meanWeightRating
• The di�erence between a word's length and the mean length of all the words
• The standard deviation of the word-lengths in this dataframe (this will be the same value for
all rows).

• The z-score of a word's length (i.e., the distance between its length and the mean, divided by
the standard deviation of all word-lengths)

4.5 Merging dataframes

How do you unite this information into one object?

states1

state.name state.abb state.division state.region

1 Alabama AL East South Central South

2 Alaska AK Pacific West

3 Arizona AZ Mountain West

4 Arkansas AR West South Central South

5 California CA Pacific West

8

6 Colorado CO Mountain West

. . .

states2

state.abb state.area center.longitude center.latitude

1 RI 1214 -71.1244 41.5928

2 DE 2057 -74.9841 38.6777

3 CT 5009 -72.3573 41.5928

4 HI 6450 -126.2500 31.7500

5 NJ 7836 -74.2336 39.9637

6 MA 8257 -71.5800 42.3645

. . .

If the row orders
match

cbind(crime, states1, states3) #cbind(): any vector or
cbind(crime, states1[,2:4], states3[,2:9]) dataframe args.

If the row orders
don't match

states <- merge(states1, states2, by="state.abb") # merge(): magic.
states <- merge(crime, states, by.x="state", by.y="state.name")

Practice:
1. Merge states and states3. Save this new dataframe as states (yes, overwriting old states).
2. Advanced:Add a column to the states dataframe, which gives the di�erence between that

state's area and the average area for that geographical region (state.region). (Hint: you

will need to use both aggregate() and merge().

4.6 Summarizing data patterns

Finding mean (median, standard deviation . . .) of all the values of some factor:

aggregate(<Outcome column>, list(<Factor 1> , <Factor 2 >, ...), <function>)

• �Dear R: Please �nd the mean frequency for all words that are animals, and all words that
are plants�:
aggregate(ratings$Frequency, list(ratings$Class), mean)

• �Find the median length for all words that are complex, and all words that are simplex�:
aggregate(ratings$Length, list(ratings$Complex), median)

• �Find the standard deviation of Frequency for all combinations of word Class and word Com-
plexity�:
aggregate(ratings$Frequency, list(ratings$Class, ratings$Complex), sd)

Practice:
• What is the mean Length of animal words and of plant words?

Counting up the number of observations:
xtabs(∼ <Factor 1> + <Factor 2> ...)

9

• �Dear R: How many words are plants, and how many are animals?�
xtabs(∼Class, data = ratings)

• �What is the breakdown of observations for all combinations of Class and by Complexity?�
xtabs(∼ Class + Complex, data = ratings)

• �How many states have more than the mean value of murders?�
xtabs(∼ assault > mean(assault), data = crime) #Returns TRUE/FALSE
counts

5 (Simple) plots

Scatterplots plot(murder ∼ assault, data = crime)

plot(meanFamiliarity ∼ Frequency, data = ratings)

Box and whisker plots plot(meanSizeRating ∼ Class, data = ratings)

10

