

Introduction to Social Science Methods: An Overview of Quantitative and Qualitative Methods

D-Lab Nora Broege Carmen Brick Dec 7 – 8, 2015

Introduction to Social Science Methods: An Overview of Qualitative and Quantitative Methods

- Part I: Research Design
- Part II: Quantitative Research
- Part III: Qualitative Research (Carmen Brick)

■ Identify the problem to be studied

- Identify the problem to be studied
 - Transform problem into a testable hypothesis/hypotheses
 - ightharpoonup An idea that will be tested through systematic investigation

- Identify the problem to be studied
 - Transform problem into a testable hypothesis/hypotheses
 - \blacksquare \rightarrow An idea that will be tested through systematic investigation
- Identify the population you need to examine in order to test your hypothesis/hypotheses

- Identify the problem to be studied
 - Transform problem into a testable hypothesis/hypotheses
 - → An idea that will be tested through systematic investigation
- Identify the population you need to examine in order to test your hypothesis/hypotheses
 - Identify the sample you can reasonably access to gather data

- Identify the problem to be studied
 - Transform problem into a testable hypothesis/hypotheses
 - → An idea that will be tested through systematic investigation
- Identify the population you need to examine in order to test your hypothesis/hypotheses
 - Identify the sample you can reasonably access to gather data
- Determine the appropriate method for data collection

- Identify the problem to be studied
 - Transform problem into a testable hypothesis/hypotheses
 - → An idea that will be tested through systematic investigation
- Identify the population you need to examine in order to test your hypothesis/hypotheses
 - Identify the sample you can reasonably access to gather data
- Determine the appropriate method for data collection
- Determine the appropriate set of instruments to collect data

- Identify the problem to be studied
 - Transform problem into a testable hypothesis/hypotheses
 - → An idea that will be tested through systematic investigation
- Identify the population you need to examine in order to test your hypothesis/hypotheses
 - Identify the sample you can reasonably access to gather data
- Determine the appropriate method for data collection
- Determine the appropriate set of instruments to collect data
- Collect data

- Identify the problem to be studied
 - Transform problem into a testable hypothesis/hypotheses
 - → An idea that will be tested through systematic investigation
- Identify the population you need to examine in order to test your hypothesis/hypotheses
 - Identify the sample you can reasonably access to gather data
- Determine the appropriate method for data collection
- Determine the appropriate set of instruments to collect data
- Collect data
- Analyze data

- Identify the problem to be studied
 - Transform problem into a testable hypothesis/hypotheses
 - → An idea that will be tested through systematic investigation
- Identify the population you need to examine in order to test your hypothesis/hypotheses
 - Identify the sample you can reasonably access to gather data
- Determine the appropriate method for data collection
- Determine the appropriate set of instruments to collect data
- Collect data
- Analyze data
- Interpret results

- Unit of analysis/observation
 - Individuals or aggregates
 - Groups, institutions, organizations

- Unit of analysis/observation
 - Individuals or aggregates
 - Groups, institutions, organizations
- Primary v. secondary data

- Unit of analysis/observation
 - Individuals or aggregates
 - Groups, institutions, organizations
- Primary v. secondary data
 - Will you be collecting your own data or using preexisting data?
 - Often easier to use secondary data:
 - International data
 - Can't get a large enough sample size
 - Can't get nationally representative sample
 - Time constraints

- Depending on:
 - Type of data you want/need
 - Sample size
 - Access
 - Location
 - Time
 - Resources

- Depending on:
 - Type of data you want/need
 - Cross-sectional, longitudinal
 - Quantitative or qualitative
 - Sample size
 - Access
 - Location
 - Time
 - Resources

- Depending on:
 - Type of data you want/need
 - Sample size
 - Generalizability
 - Small- or large-N
 - Access
 - Location
 - Time
 - Resources

- Depending on:
 - Type of data you want/need
 - Sample size
 - Access
 - Is it a protected population? (e.g. minors/students)
 - Can you gain access?
 - Human subjects
 - Location
 - Time
 - Resources

- Depending on:
 - Type of data you want/need
 - Sample size
 - Access
 - Location
 - local, state, national, international
 - Time
 - Resources

- Depending on:
 - Type of data you want/need
 - Sample size
 - Access
 - Location
 - Time
 - Timeline for data collection
 - Resources

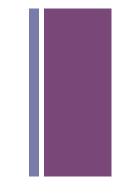
- Depending on:
 - Type of data you want/need
 - Sample size
 - Access
 - Location
 - Time
 - Resources
 - Are you conducting the research alone? (do you have RAs)
 - Cost of instrument design
 - Cost of data collection
 - Cost of analysis

Quantitative Research

- Systematic empirical investigation of observable phenomena using statistical (computational) techniques
- Aims at causal explanation answering "Why"
- Numeric analysis and measurement are the key parts of quantitative research that state the fundamental connection between observation and analytic statement(s)
- Quantitative methods are mostly used to justify the hypotheses and draw a general conclusion on selected hypotheses
- Statistics, tables and graphs, are often used to present the results of these methods

Quantitative Research

- Based on the idea that aspects of environment can be quantified, measured and expressed numerically
- The information about a phenomenon of environment is expressed in numeric terms that can be analysed by statistical and spatial methods
- The observations can be directly numeric information or can be classified into numeric variables


Quantitative Research

- Systematic empirical investigation of observable phenomena using statistical (computational) techniques
- Aims at causal explanation
 - Primarily answering "Why"
- Characteristics of quant research
 - Scientific
 - Positivist
 - Objective
 - Experimental
 - Macros (events/processes/relations)
 - Deductive
 - Hard/factual
 - Representative/generalizable
 - Apolitical
 - Realist

+		Designs & Techniques	Methods	Details	Sample
	Q U A N T I T A T I V E	Experimental Designs	Lab Experiment	Applying scientific method to experimentally examine an intervention in a controlled setting	2 or more groups
			Field Experiment	Applying the scientific method to experimentally examine an intervention in a real world setting	2 or more groups
			Quasi-Experimental	Selecting a group to test a variable w. out random pre-selection processes	2 or more groups
		Descriptive Designs	Survey/Questionnaire	Series of ques & other prompts to gather info from respondents	Large (most often), representative, often random sample
			Meta-Analysis	Statistical method for combining the results from a set of studies that address related hypotheses	2 or more pre-existing studies
			Case Study	In-depth investigation of an individual, group or event	At least 1 individual, group or event
			Applied Behavioral Analysis	An examination of individual responses to an intervention(s)	At least 1 individual
	M E T H O D S	Longitudinal	Experiments, surveys, casestudy, applied-behavioral analysis	Applying a specific method & corresponding instruments to a sample over time	Individuals, groups or institutions over time (may be the same or similar)
		Pre-Test Designs	Pilot Study	Small scale preliminary study conducted before main research to check feasibility of research design, time line, instruments, etc & make necessary changes	Small group who can inform/comment on research design
			Usability Testing	Evaluating a product (i.e. instrument) by testing it on a sample of potential users	Small group who can inform/comment on validity and reliability of

instrument

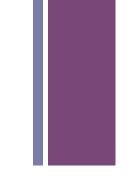
EXPERIMENTAL DESIGNS

Experimental Research

- Compare two or more groups that are similar except for one factor or variable
- Can occur in lab or field (natural setting)
- Conditions can be highly controlled; variables can be manipulated by the researcher
- Tend to use randomized samples
- 2 groups treatment & control

Quant Research - Experiments

- How does a factor influence the behavior of an individual or a group?
- Lab experiments
 - Require lab settings
 - Controlled environment
 - Results highly reliable
 - Develop cause & effect relationships
 - Can only use small samples often too costly for large-N
 - Can only study snapshot of present (not past)
- Field experiments
 - Occur in naturally occurring environments
 - Examining an intervention in the real world
 - Subjects don't always know they are involved in experiment
 - Seen as having higher degree of external validity since occur in real world


Experiments - Examples

- Lab
 - Milgram exp
 - Zimbardo Prison exp
- Field
 - Drug/pharmaceutical trials
 - Poyner on reducing theft in public spaces

DESCRIPTIVE DESIGNS

DESCRIPTIVE DESIGNS SURVEYS

Survey Research

- Use set of predetermined, standardized, questions
- Collect answers from representative sample
- Answers are categorized and analyzed so tendencies can be discerned

Quant Research - Survey

- Used to assess thoughts, opinions, feelings, habits, activity logs
- Primary v. secondary data
 - Developing survey instruments to conduct primary data can be difficult – may require piloting questionnaire
 - Order of the questions is v. important
 - Often easier to use secondary survey data or instruments
 - Instruments have been proven reliable
- Can be issues or reliability & validity relating to self-reports
 - Response bias
 - Can be checked/corrected by test-retest of questions and standardization procedures

Survey - Examples

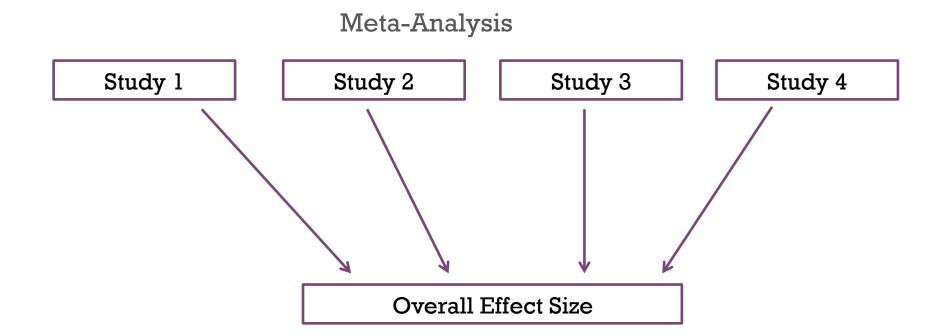
- General Social Survey
- US Census

The GSS Data Explorer

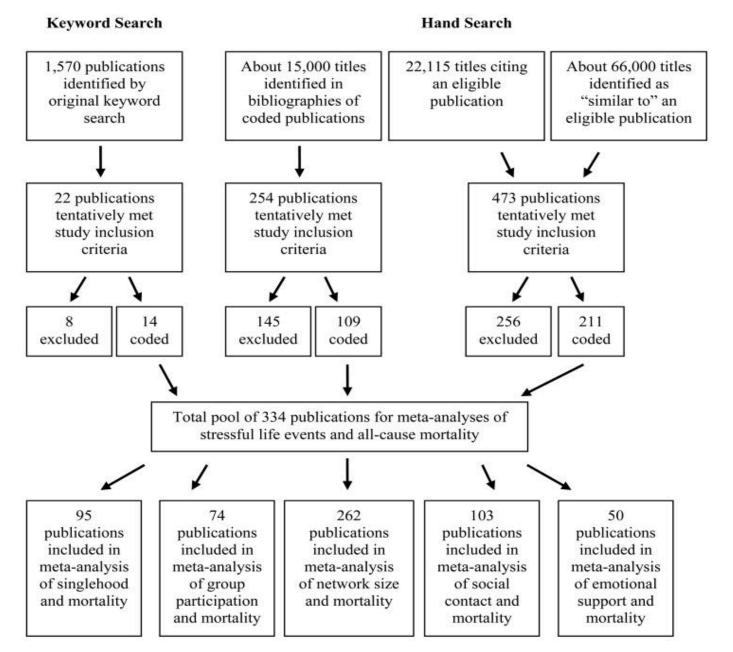
A New Gateway to Data from the General Social Survey

DESCRIPTIVE DESIGNS META-ANALYSIS

Meta-Analysis


- Numerous experimental studies with reported statistical analysis are compared
- Distinguishes trends
- Effect size (the influence of the independent variable on the dependent variable) can be compared
- Similar studies can yield a common truth
- Conducting research about previous research

+


Quant Research – Meta-Analysis

- Using a statistical approach to combine the results from multiple studies in an effort to increase power (vs. individual studies)
- Improves estimates of effect size
- Can also resolve uncertainty when reports disagree
- Can only be used if a common statistical measure is included across studies
- Results generalizable to larger population
- Precision & accuracy of estimates can be improved as you add more data
- Hypothesis testing can be applied to summary estimates
- Does not predict the results of a single, larger study
- Can't control for sources of bias a meta-analysis of badly designed studies will produce bad statistics

Meta-Analysis - Examples

+ Meta-Analysis - Examples

DESCRIPTIVE DESIGNS CASE STUDIES

Quant Research - Case Study

- Also called single case design
- Describes numerically a specific case (can be organization, group, event, action or individual)
- May test or generate hypotheses
- Results often presented with tables and graphs

+

Quant Research - Case Study

- Up-close, detailed examination of a subject & related contextual conditions
 - → an empirical inquiry that investigates a phenomenon within its real world contexts
- Holistic approach
- Not to be confused w. qualitative research can be a mix of quantitative and qualitative data
- No random sample information oriented sampling
 - Outlier cases may reveal more than a representative case
- Types of cases:
 - Explanatory
 - Exploratory
 - Multiple-case study
 - Intrinsic
 - Instrumental
 - Collective

+ Case Study - Examples

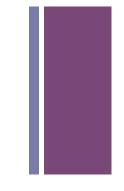
Case study type	Details	Example	Small N	Large N
Explanatory	Seeking an answer to a question on the causal links in real life interventions that may be too complex for survey or experimental strategies	Analyzing a web-based e- commerce site in Colombia		•
Exploratory	Explore situations when intervention has no clear, single set of outcomes	An observational study of the development and implementation of a teacher-student relationship	✓	✓
Multiple-case	Explore differences btwn & within cases – goal is to replicate findings across cases	Applying the multiple case study method to different social services available to violent crime victims		✓
Intrinsic	When intent is to better understand the case, it's particularities and ordinariness	An examination of how Alzheimer's effects couples	✓	
Instrumental	Provides insight into an issue or helps to refine a theory – the actual case is of secondary interest (unlike intrinsic)	Examining the components of individual behavior that indicate the potential for domestic violence	✓	
Collective	Similar to multiple-case	A collective case study of stress among HS math teachers	✓	✓

DESCRIPTIVE DESIGNS APPLIED BEHAVIORAL ANALYSIS

Quant Research - Applied Behavior Analysis

- Developing and analyzing procedures that produce effective and beneficial changes in behavior
- Examine the individual's responses in different situations (conditions) across time
- Usually conducted in experimental form
- Also known as behavior modification

Quant Research – Applied Behavioral Analysis


- All studies require:
 - At least 1 participant
 - At least 1 behavior (dependent variable)
 - At least 1 setting
 - A system for measuring the behavior
 - At least 1 treatment/intervention
 - Manipulations of the independent variable so that its effects on the dependent variable may be analyzed
 - A beneficial intervention (for the participant)
- Usually small-N studies
- Require manipulation and control of method

+ Applied Behavior Analysis - Example

■ <u>Testing interventions for autistic students</u>

STRUCTURED TEACHING TECHNIQUES (DTT = Discrete Trial Teaching)	NATURALISTIC TEACHING TECHNIQUES (PRT = Pivotal Response Treatment)	
Teaching motor imitation:	Teaching motor imitation:	
Prompt imitation of actions (e.g. clap hands) reinforce correct response with edible or preferred toy	A child likes cars. Prompt imitation of actions using preferred toy (e.g. drive car) reinforce correct response with car toy	
Teaching identification of colours: Using shapes in different colours reinforce correct colour with edible or preferred toy	Teaching identification of colours: A child likes manipulating play-dough Use play-dough with different colour pieces reinforce correct colour by offering the playdough of the colour identified	
Teaching identification of familiar people:	Teaching identification of familiar people:	
Using flashcards with photos of familiar people	Play with familiar people	
reinforce correct name with edible or preferred toy	reinforce correct name with tickles or cuddles from that person	

LONGITUDINAL DESIGNS

Quant Research - Longitudinal

- Individual or group research conducted across time, often decades
- Cohort Study: data is gathered from the same subjects repeatedly, over time
- Panel study: data is gathered from similar subjects, over time
- May be conducted using other methods (surveys, case studies)
- Studying developmental trends, the lifespan

+

Quant Research - Longitudinal

- Subject attrition is major problem
 - "missing data"
 - Replacing with participants w. similar characteristics
- Preserving confidentiality is also difficult
- Specific standardized tools may change over time
- Mostly observational observe the state of things w.out manipulation → may have less causal power than experiments
- **BUT** the inclusion of repeated observations at the individual level → more power than cross-sectional observational studies
- Exclude time invariant unobserved differences
- Include temporally ordered events
- Allow researchers to distinguish short v. long term phenomena

+

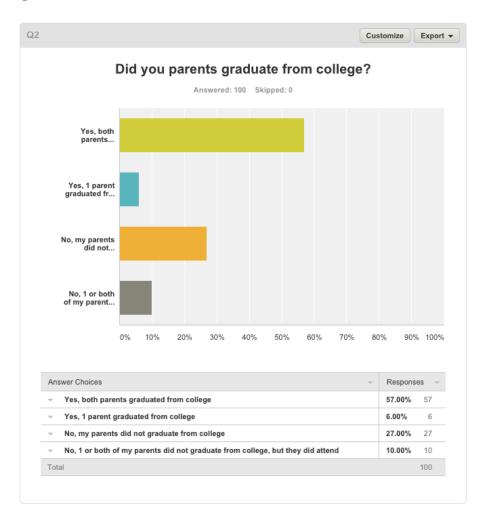
Longitudinal - Example

- Survey Data
 - National Longitudinal Survey of Youth (ages 12-16 in 1997)
- Case Study
 - "UP" British documentary of 14 British children starting in 1964

Quant Methods - Instruments

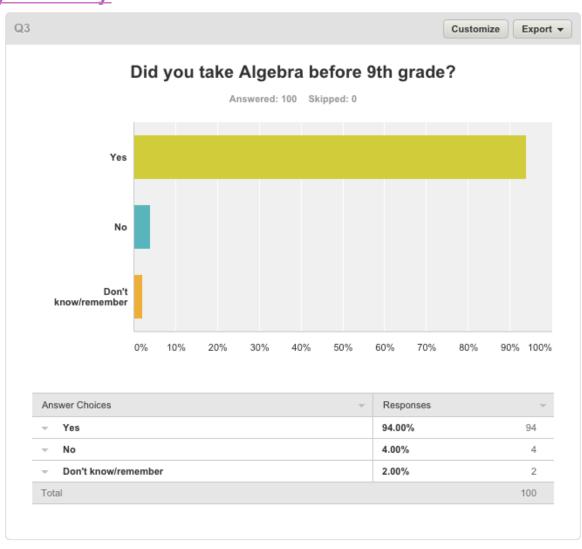
- Printed images, paper/pencil
- Online
 - Survey Monkey
 - Zoomerang
 - Poll Daddy
 - Additional online survey instruments
- Electronic devices: Smart phones, ipads, bio-physio readers, computers

+


Quant Methods - Instruments

- Online
 - **Survey Monkey**

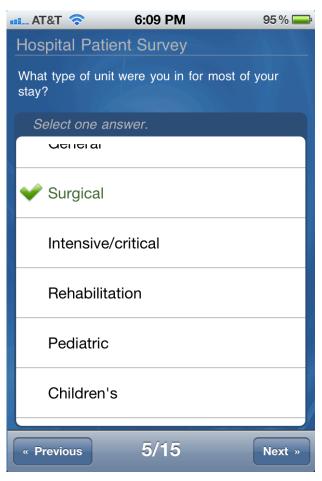
1. What is your students ID #?	
2. Did you parents graduate from college?	
Yes, both parents graduated from college	
Yes, 1 parent graduated from college	
No, my parents did not graduate from college	
No, 1 or both of my parents did not graduate from college, but they did atten	d
3. Did you take Algebra before 9th grade?	
Yes	
○ No	
On't know/remember	
4. Were any of your HS courses honors?	
Yes	
○ No	
Don't know/remember	

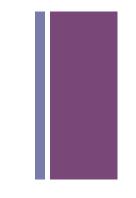

+ Quant Methods - Instruments

- Online
 - **Survey Monkey**

+ Quant Methods - Instruments

- Online
 - **Survey Monkey**




Quant Methods - Instruments

■ Electronic devices: Smart phones, ipads, bio-physio readers, computers

+

METHOD SELECTED, NOW WHAT? MEASUREMENT CRITERIA

- Objectivity
- Accuracy
- Precision
- Reliability
- Validity

- Objectivity researchers stand outside the phenomena they study. Data collected are free from bias
- Accuracy Are the methods adequate to answer your questions; reveal credible information; convey important information?

- Objectivity researchers stand outside the phenomena they study
 - Data collected are free from bias
- Accuracy Are the methods adequate to answer your questions?
 - Do they reveal credible information?
 - Do they convey important information?
- Precision How trustable are the measure?
 - How confident is the result?
 - Pilot testing & Usability testing

- Objectivity researchers stand outside the phenomena they study. Data collected are free from bias
- Accuracy Are the methods adequate to answer your questions; reveal credible information; convey important information?
- Precision How trustable are the measure; how confident is the result?
 - Pilot testing & Usability testing
- Reliability if something was measured again using the same instrument, would it produce the same or nearly the same results?
 - Yielding consistent results over time or under similar conditions

- Objectivity researchers stand outside the phenomena they study. Data collected are free from bias
- Accuracy Are the methods adequate to answer your questions; reveal credible information; convey important information?
- Precision How trustable are the measure; how confident is the result?
 - Pilot testing & Usability testing
- Reliability if something was measured again using the same instrument, would it produce the same or nearly the same results?
 - Yielding consistent results over time or under similar conditions
- Validity do the measures reflect all the facets you are attempting to study?

+ Content Validity

- The extent to which the items on a testing tool (that being used to measure the dependent variable) reflect all of the facets being studied
- All aspects are sampled

+ Criterion-Related Validity

- Also called predictive validity
- The extent to which a testing tool yields data that allow the researcher to make accurate predictions about the dependent variable

Construct Validity

- The extent to which the testing tool measures what it is supposed to measure
- Relationship between the items on the tool and the dependent variable
- Also relates to actual (physical) construction of a written tool (e.g. Dean's Survey) and how this impacts the accuracy of the results

Internal Validity

- Relates to the internal aspects of a study and their effect on the outcome:
 - Researcher planning and preparation
 - Judgment participants should feel free of judgement
 - Control for potential confounding variables

External Validity

- Relates to the extent to which findings can generalize beyond the actual study participants
- "How valid are these results for a different group of people, a different setting, or other conditions of testing, etc.?"

- Summarizing data
 - variables; simple statistics; effect statistics and statistical models; complex models

- Summarizing data
 - variables; simple statistics; effect statistics and statistical models; complex models
- Generalizing from sample to population
 - precision of estimate, confidence limits, statistical significance,
 p value, errors

- Summarizing data
 - variables; simple statistics; effect statistics and statistical models; complex models
- Generalizing from sample to population
 - precision of estimate, confidence limits, statistical significance, p value, errors
- Data are a set of values of one or more variables

- Summarizing data
 - variables; simple statistics; effect statistics and statistical models; complex models
- Generalizing from sample to population
 - precision of estimate, confidence limits, statistical significance,
 p value, errors
- Data are a set of values of one or more variables
 - A variable is something that has different values.
 - Values can be numbers or names, depending on the variable:
 - Numeric year of birth
 - Counting number of natural disasters
 - Ordinal highest level of education (values are numbers or names/labels)
 - Nominal gender (values are names/labels)

Independent Variable

- The variable that is controlled or manipulated by the researcher
- The variable that is thought to have some effect upon the dependent variable
- The one difference between the treatment (experimental) and control groups

Dependent Variable

- That which is measured
- The outcome
- That which is influenced or affected by the dependent variable

+ Quantitative Research

Y (dep variable)	X (ind variable)	Model/Test	Effect statistics
Numeric	Numeric	Regression	Slope, intercept, correlation
Numeric	Nominal	T-test, ANOVA	Mean difference
Nominal	Nominal	Chi-square	Frequency difference or ratio
Nominal	Numeric	Categorical	Frequency ratio per

Analysis Programs

- Software (all except SAS available on D-Lab machines)
 - Stata
 - SPSS
 - SAS
 - R
 - Python
 - GIS
 - Excel

Pros of Quantitative Research?

- Clear interpretations
- Make sense of and organize perceptions
- Careful scrutiny (logical, sequential, controlled)
- Reduce researcher bias
- Results may be understood by individuals in other disciplines

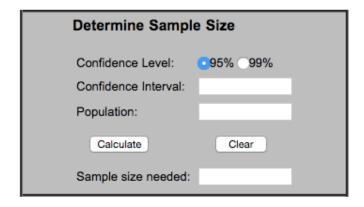
Cons of Quantitative Research?

- Can not assist in understanding issues in which basic variables have not been identified or clarified
- Only 1 or 2 questions can be studied at a time, rather than the whole of an event or experience
- Complex issues (emotional response, personal values, etc.) can not always be reduced to numbers
- Difficulties in distinguishing opinions and facts from surveys
- Results from surveys sometime have serious limitations
- People's perceptions and scientific observation may contradict

Quantitative vs. Qualitative

- There is/shouldn't be a rivalry between quantitative and qualitative methods
 - Each can be used to confirm the other
- Quantitative data and findings have underlying qualitative dimension
 - Qualitative data can also add description, detail and texture to quantitative data
- Quite often availability of data and its characteristics determine the method and what is possible not a preference for one over the other

+


Quantitative vs. Qualitative

- There is/shouldn't be a rivalry between quantitative and qualitative methods
 - Each can be used to confirm the other
- Quantitative data and findings have underlying qualitative dimension
 - Qualitative data can also add description, detail and texture to quantitative data
- Quite often availability of data and its characteristics determine the method and what is possible not a preference for one over the other
- Both quantitative and qualitative research can aim at description of built environment
- Complementary not contradictory
 - different kinds of research questions and objects of research
 - different perspectives on the same research objects / questions (methodological triangulation)

Best Practices – Sample Size

- Sample size
 - Data collection a large enough sample so that missing data won't become an issue
 - Sample size calculator how to generalize to population

Find Confidence Interval				
Confidence Level:	○ 95% ○99%			
Sample Size:				
Population:				
Percentage:	50			
Calculate	Clear			
Confidence Interval:				

Best Practices – Things to Consider

- Time constraints
 - Choose the method that best suits your research time
 - l year is not enough for a longitudinal study
- Resource constraints
 - Choose the method that best suits your budget and resources available
 - If you don't have access to a lab, a lab experiment is unrealistic
- Access
 - Do you have access to a generalizable sample?

+

Best Practices

- **■** Ethics
 - Maintaining respect for participants
 - Can participants opt out at any point?
 - Balancing benefit & harm
 - Will participation cause harm?
 - Does the potential benefit outweigh any potential harm (psychological effects, stress, anxiety, time)
 - Will the method allow protection of anonymity?
 - Anonymity pseudonyming is key!!
 - How involved will the researcher be will he/she bias results?

Thank You!

- References/Resources
 - The Practice of Social Research Earl Babbie
 - Statistical Methods for the Social Sciences Agresti & Finlay
 - Sage Research Methods http://srmo.sagepub.com/
 - Ethics: <u>Guidelines for Research Ethics</u>
 - Best Practices: NIH Office of Behavioral and Social Sciences Research
 - Statistics www.ats.ucla.edu
 - Workshops & consulting <u>www.dlab.berkeley.edu</u>

■ If you have any further questions or comments, please feel free to email me, nbroege@berkeley.edu