Introduction to Crowdsourcing in Research

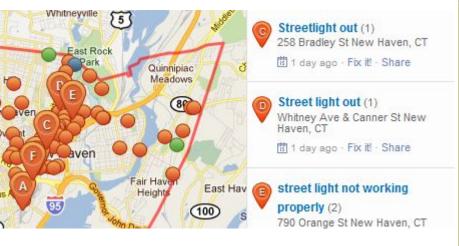
DLab Presentation, April 16, 2019

Kate Beck, MCP+MPH Program Lead, SafeTREC

Tracy McMillan PhD
Senior Policy & Program Analyst, SafeTREC

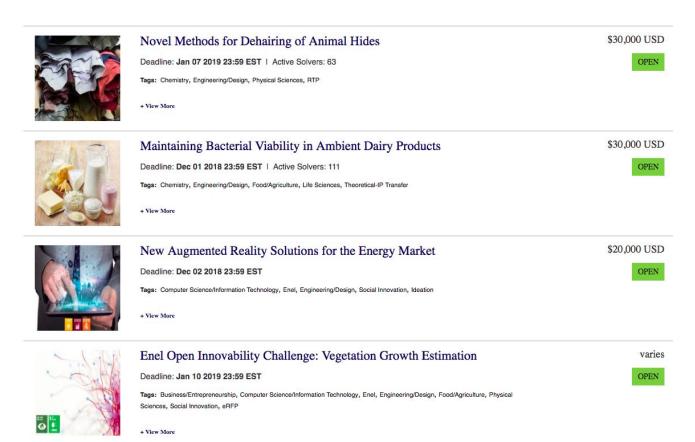
Agenda

- Introduction to crowdsourcing
- Crowdsourcing uses
- Benefits and concerns
- Case study: crowdsourcing in transportation safety
- Discussion and crowdsourcing activities



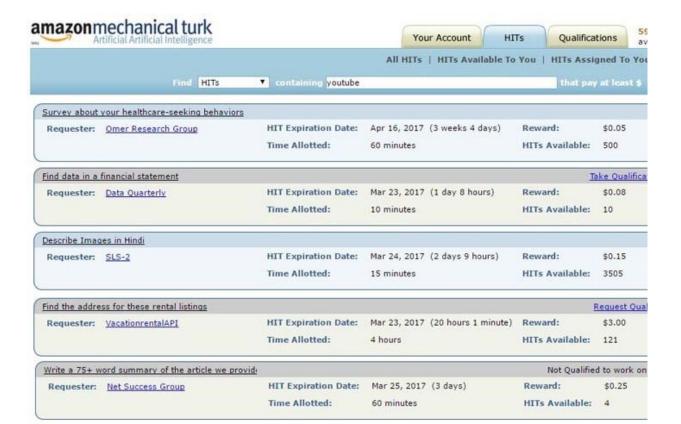
Crowdsourcing

- uses collective knowledge to meet organizational or research-oriented goals
- is a bottom-up approach to meet top-down goals
- involves mutually beneficial outcomes
- is used to gather information, solve problems, generate and prioritize ideas, and complete tasks



- 1) Information Gathering
 - SeeClickFix
 - Ushahidi
 - online survey platforms




- 2) Empirical Problem Solving
 - Innocentive
 - GitHub

- 3) Idea generation, prioritization and decision-making
 - MTC's Transformational Projects

- 4) Tasking
 - Amazon's Mechanical Turk
 - Zooniverse

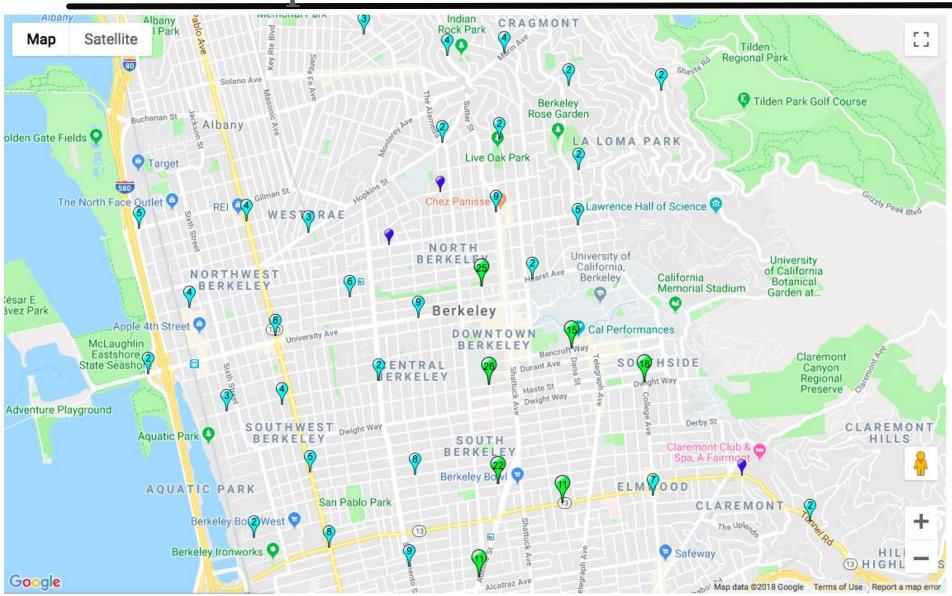
Crowdsourcing Issues

- Motivation
- Representativeness of participants
- Privacy and legality
- Misuse of the platform
- Critical mass
- Ethical issues, "crowdsploitation"

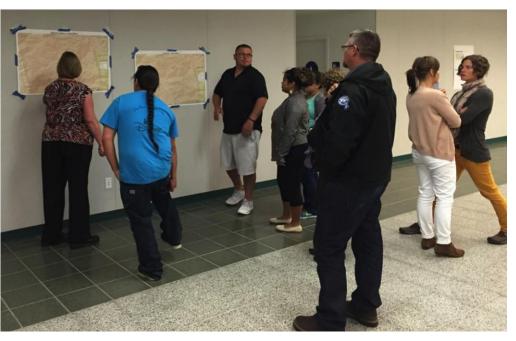
Planning out a Crowdsourcing Project

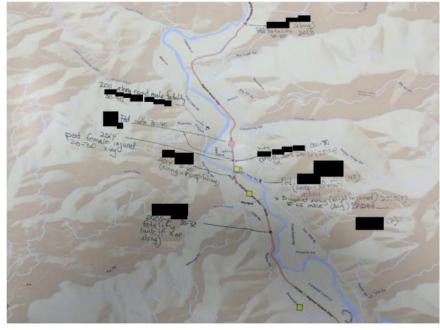
- What issue are you trying to address?
- Who can help you solve this problem? How will this group benefit from helping?
- What are the best ways for this group to be involved?
- How can you reach this group?

Crowdsourcing Tips

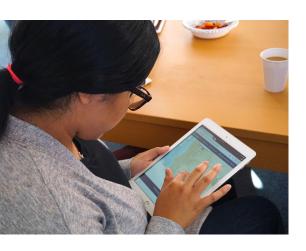

- Use a crowdsourced platform or dataset that already exists
- understand your crowd's motivations to (and not to) participate
- Recognize and reduce barriers to participation
- Communicate mutual benefits

Case Study: Crowdsourcing in Transportation


Police Reported Collisions

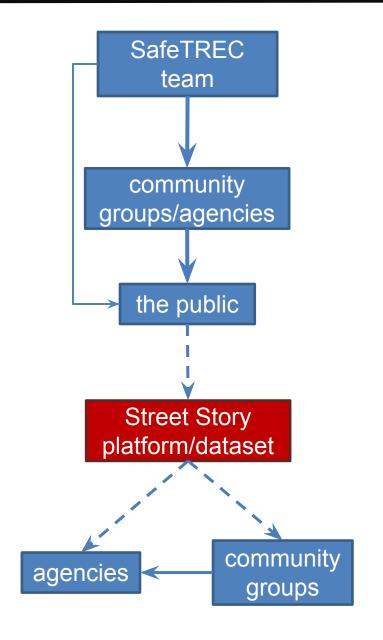


Local Knowledge


Collection of Local Knowledge

Street Story

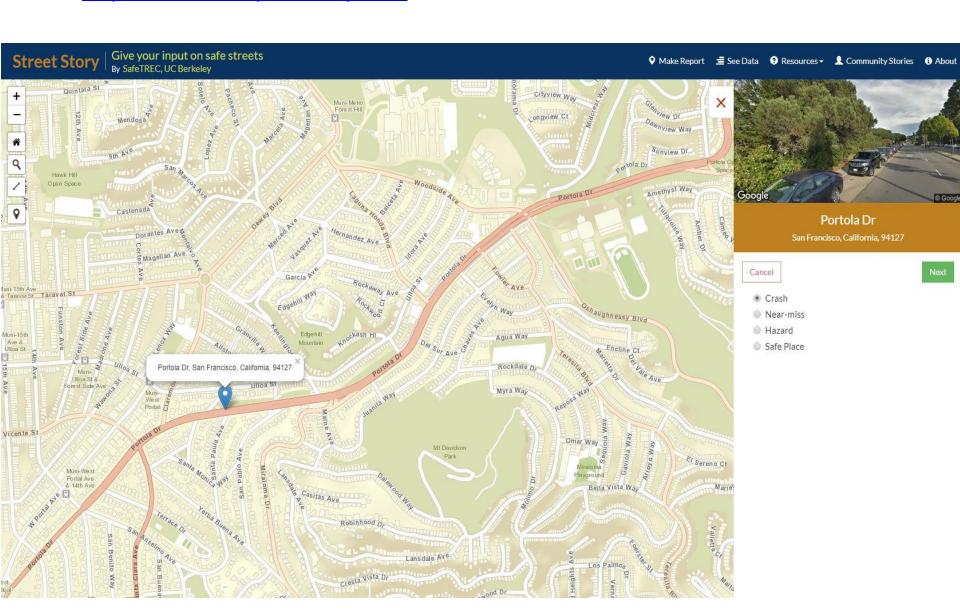
 Street Story helps community groups and agencies collect and understand information that is important for transportation safety but is difficult to gather



Designing the Street Story Program

Interviews, focus groups, pilot testing

Key Partners	Key Activities Key Resources	Value Partic	ipants	Participant Relationships	Participant Segments
Cost			Revenue Stream	ms	


Street Story Program Model

OutreachData input/output

How to Report

https://streetstory.berkeley.edu/

Street Story Data

Report Map

Near-miss

Riding in a vehicle

Walking

Crash

Using a mobility device

Biking

Other

Report Type	Count	Percent	
Crash	61	13 %	
Near-miss	131	29 %	
Hazard	213	47 %	
Safe	49	11 %	
Total	454		

Hazard

Scootering

Multiple Modes

Safe

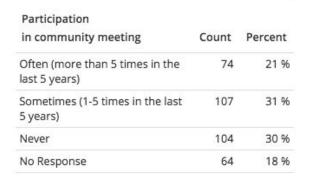
Street Story Data

 \equiv

 \equiv

≡

Demographic Information


Gender	Count	Percent	
Female	113	32 %	
Male	171	49 %	
Non Binary	2	1 %	
No Response	63	18 %	
No Response	63		

Age	Count	Percent	
18-25	21	6 %	
26-64	237	68 %	
65 years or older	14	4 %	
No Response	77	22 %	

≡

≡

Resident in area	Count	Percent
Yes	222	64 %
No	60	17 %
No Response	67	19 %

Have disability	Count	Percent	
Yes	5	1	96
No	149	43	96
No Response	195	56	96

First time respondent	Count	Percent
Yes	265	76 %
No	84	24 %
No Response	0	0 %

Race/Ethnicity	Count	Percent
American Indian/Alaska Native	7	2 %
Asian	33	9 %
Black/African American	6	2 %
Latino/Hispanic	29	8 %
Native Hawaiian/Pacific Islander	3	1 %
White	211	56 %
Other	27	7 %
No Response	62	16 %

Street Story Narratives

"This intersection experiences regular collisions. On several occasions a car has run up onto the sidewalk. There have been numerous close calls with pedestrians. Cars frequently run the red light at this intersection."

Addressing Crowdsourcing Issues

- Motivation and mutual benefits
- Participant representativeness
- Privacy issues
- Misuse of the platform

Lessons Learned

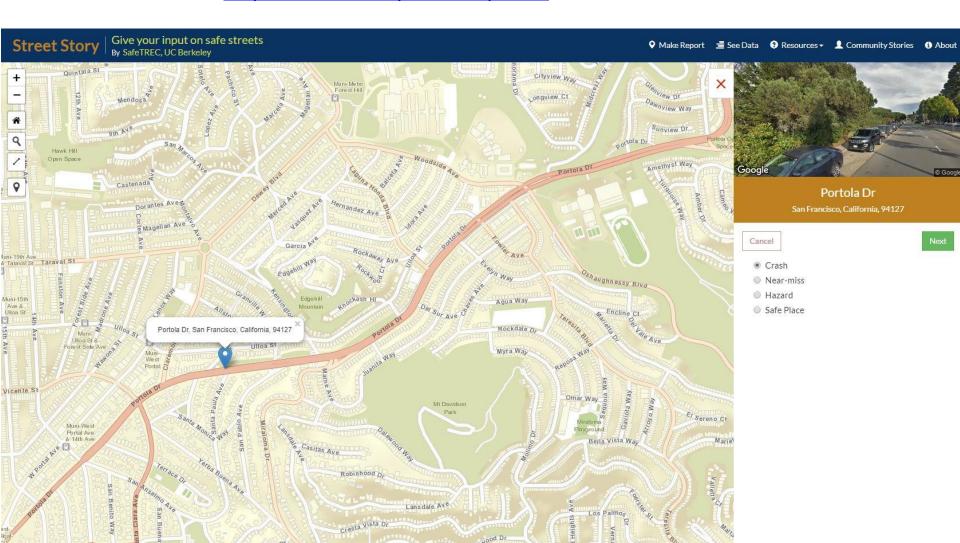
- Recognize when to collect data, and when to use existing sources
- 2. Understand participants' motivation and speak in a language that participants understand
- 3. Recognize the time it takes to build and maintain relationships

Resources

- UC Berkeley <u>Coalition for Education & Outreach</u>
- FieldScope platform for hosting citizen science project data <u>http://www.fieldscope.org</u>
- SciStarter Where to find the citizen science projects and audiences https://scistarter.org
- <u>Citizen science: crowdsourcing for research</u>, Catherine Lichten et al., University of Cambridge (2018)
 <u>A Methodological Framework for Crowdsourcing in Research</u>, Michael Keatinga and Robert D. Furberg, RTI International (2013)

Activity - Crowdsourcing Planning

Key Partners	Key Resources	Value t	Povenue Streem	Participant Relationships	Participant Segments
Cost			Revenue Streams	5	


Key Partners Key Activities Value to Participants Participant Relationships Participant Segments Acquisition Retention **Production:** produce a Community grps/agencies: **Primary:** Community groups Current -California Walks survey, database, -Free technical assistance working on transportation Community grps/agencies: -CPBST program graphs/tables/maps for community engagement safety a) -CPBSTs **Problem-solving:** technical for transportation safety -focus cities network -TIMS and SafeTREC media assistance for community (through survey tool, data **Secondary**: local gov't -OTS analysis and reporting outreach agencies -conferences/workshops/webi **Potential** Platform: updates, based on survey tool) nars -Active Transportation -public information on -word of mouth **Tertiary:** the general public management -direct outreach **Relationships:** relationship community safety needs Resource Center b) -SS newsletter -transportation consultants building and maintenance -direct outreach, personal -public health community with community groups and The public: assistance -MPOS, local agencies agencies -convenient, anonymous -webinars, group assistance -bike/ped advisory way to provide information -co-creation (important part **Key Resources** commissions about safety issues of building and sustaining database) -website -Existing relationships with The public: community groups and a)Through CS2, individually agencies through media b) None -human resources: tech team, program Channels (how to reach management team participant segments) -Awareness: CPBSTs, newsletter, TIMS, other SafeTREC programs -Evaluate whether to use SS: About explanation on website, SS updates -Purchase: online -Delivery: online, customer support **Revenue Streams** Cost -website maintenance, database management, staff salary, travel, -grant funding

materials

Activity - Street Story Reporting and

Data

https://streetstory.berkeley.edu/

Sources

- 1) Crowdsourcing, by Daren C. Brabham (2013)
- 2) <u>Crashes on and Near College Campuses: A Comparative</u>
 <u>Analysis of Pedestrian and Bicyclist Safety</u>. Loukaitou-Sideris,
 Medury, et al. Journal of the American Planning Association
 Vol. 80, Iss. 3, 2014.
- 3) <u>Investigating the underreporting of pedestrian and bicycle safety crashes in and around university campuses-a crowdsourcing approach</u>. Medury, Grembek, et al. Accident Analysis and Prevention, 2017.

Contact Information

Kate Beck katembeck@berkeley.edu

Jill Cooper cooperi@berkeley.edu

