Creating Maps with ArcGIS Online

Susan Powell, smpowell@berkeley.edu GIS & Maps Librarian

October 2016

Slides adapted from Patty Frontiera's CARTO workshop.

Outline

Big Picture

- Why Map?
- Why ArcGIS Online?
- Along the way...
 - Geographic data
 - GIS
 - Spatial analysis

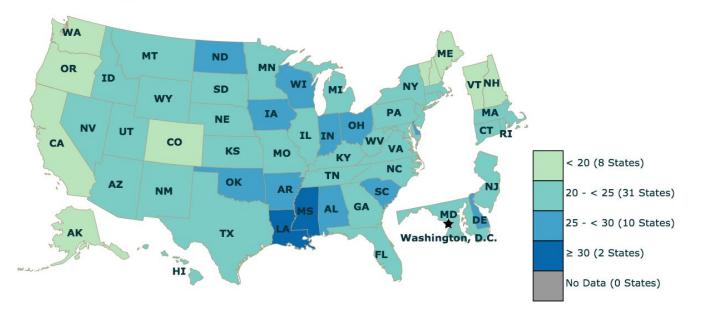
Tutorial

• Interrupted with quick demo

Power of Geographic Data

2013: Percent of adults who report consuming vegetables less than one time daily

Location 🔶	<u>Value</u>	95% CI	Sample Size
National	22.4	(22.2-22.7)	434,803
Alabama	25.8	(24.1-27.5)	5,871
Alaska	19.2	(17.4-21.0)	4,197
Arizona	23.8	(21.3-26.4)	3,807
Arkansas	28.0	(26.1-30.0)	4,673
California	17.3	(16.2-18.4)	9,651
Colorado	19.1	(18.1-20.1)	11,978
Connecticut	22.2	(20.7-23.8)	6,954
Delaware	28.9	(27.0-30.8)	4,741
District of Columbia	20.9	(18.8-23.2)	4,283
Florida	20.8	(19.8-21.9)	30,309
Georgia	23.7	(22.3-25.2)	7,097
Hawaii	23.1	(21.6-24.7)	7,241
Idaho	20.4	(18.8-22.1)	5,132
Illinois	24.0	(22.4-25.7)	5,291
Indiana	26.9	(25.7-28.2)	9,250
Iowa	26.8	(25.4-28.2)	7,456
Kansas	22.9	(22.2-23.6)	21,405
Kentucky	24.9	(23.5-26.3)	9,819
Louisiana	32.7	(30.5-35.0)	4,632
Maine	17.7	(16.5-19.0)	7,537
Maryland	22.0	(20.7-23.3)	11,646
Massachusetts	20.1	(19.0-21.2)	13,236
Michigan	24.8	(23.6-25.9)	11,869
Minnesota	23.6	(22.2-25.0)	12,985
Mississippi	30.6	(28.9-32.3)	6,644


Missouri	24.3	(22.7-25.9)	6,527
Montana	20.5	(19.4-21.7)	8,957
Nebraska	23.3	(22.2-24.4)	15,700
Nevada	20.8	(18.5-23.2)	4,636
New Hampshire	16.8	(15.6-18.2)	5,862
New Jersey	21.4	(20.2-22.6)	11,615
New Mexico	21.5	(20.2-22.9)	8,228
New York	22.0	(20.8-23.3)	7,947
North Carolina	22.4	(21.1-23.7)	7,975
North Dakota	27.4	(25.9-28.9)	7,141
<u>Ohio</u>	26.3	(25.1-27.7)	10,734
<u>Oklahoma</u>	25.3	(23.9-26.7)	7,532
Oregon	16.3	(14.9-17.7)	5,239
Pennsylvania	24.7	(23.6-25.9)	10,230
Rhode Island	21.4	(19.8-22.9)	5,737
South Carolina	26.8	(25.5-28.1)	9,645
South Dakota	24.5	(22.7-26.3)	6,409
Tennessee	24.3	(22.5-26.2)	4,895
Texas	21.5	(20.2-22.9)	9,557
<u>Utah</u>	20.4	(19.4-21.4)	11,616
Vermont	16.5	(15.2-17.9)	5,857
Virginia	21.4	(20.2-22.8)	7,507
Washington	18.2	(17.2-19.3)	10,412
West Virginia	24.2	(22.8-25.6)	5,534
Wisconsin	25.8	(24.0-27.7)	5,788
Wyoming	20.1	(18.6-21.7)	5,819

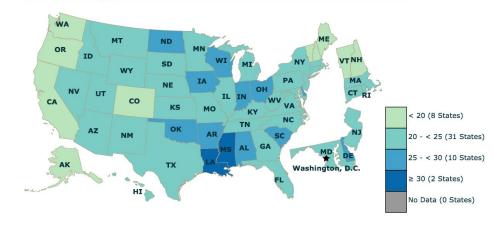
What 2 states have the highest percent of adults who don't eat vegetables?

The Power of Geographic Data, Mapped

2013: Percent of adults who report consuming vegetables less than one time daily †

Save Map

What 2 states have the highest percent of adults who don't eat vegetables?


Data Visualization: A visual summary of the data

What?

- The data
- Message in the data
- Summary requires simplification

How?

- Visualization type
- Symbology
- Context

2013: Percent of adults who report consuming vegetables less than one time daily $\ensuremath{\dagger}$

Save Map

Why?

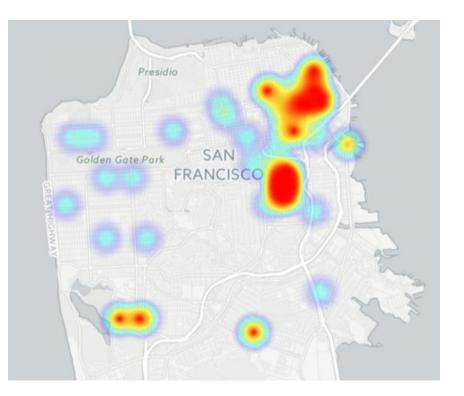
• exploration vs communication

Why Map?

SF Drug & Prostitution Incidents, Jan - Oct, 2016

Location:

Where were these incidents located?

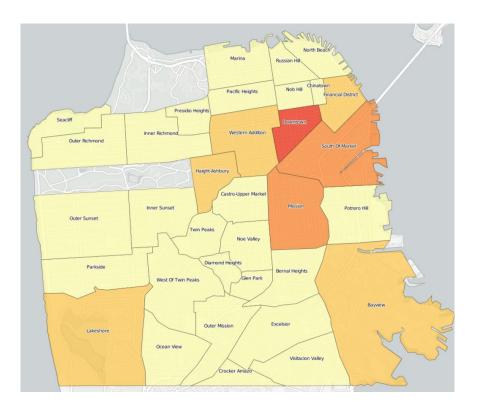


Simple point or dot map Shows geographic context when displayed on a *basemap*

SF Prostitution Incidents, Jan - Oct, 2016

Location:

How does the distribution vary within the study area?

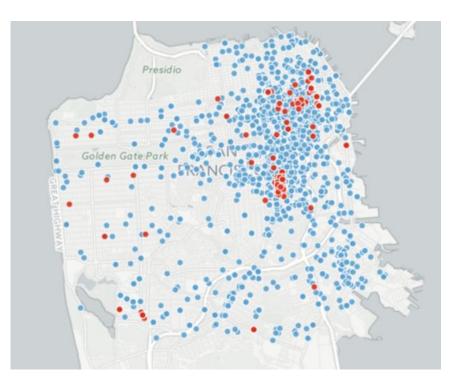


A heat map transforms the data to show density

SF Drug & Prostitution Incidents, Jan - Oct, 2016

Location:

How does the distribution vary within areas of interest?

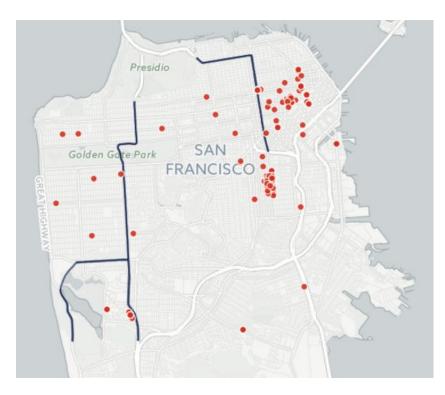

Choropleth map

Color areas
by data
values

SF Drug & Prostitution Incidents, Jan - Oct, 2016

Spatial Relationships

Where were these incidents located relative to one another?

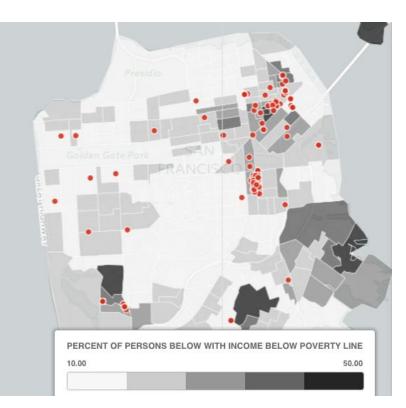


Category map shows locations by type.

SF highways & Prostitution Incidents, Jan - Oct, 2016

Spatial Relationships

Where were these incidents located relative to other features?

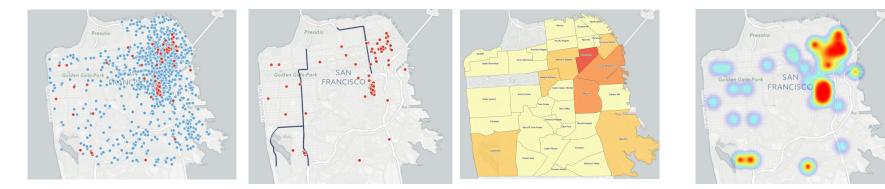

Map Layers

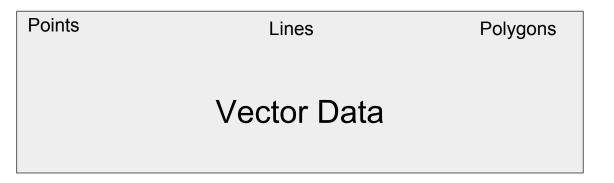
Basemap + one or more thematic layers

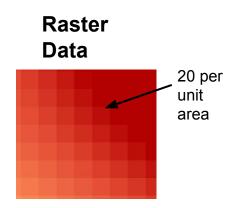
SF Poverty & Prostitution Incidents, Jan - Oct, 2016

Spatial Relationships

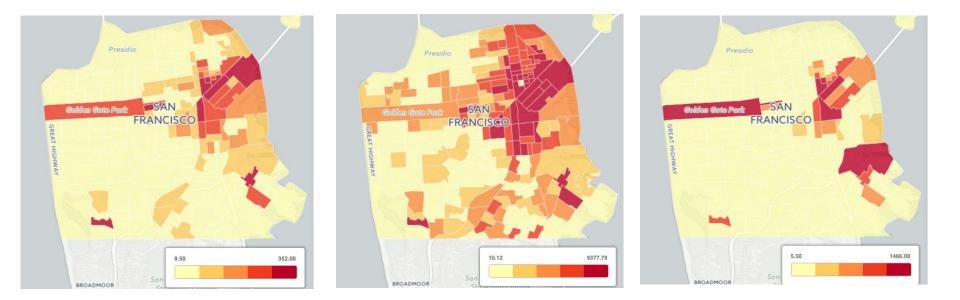
Where were these incidents located relative to other factors?



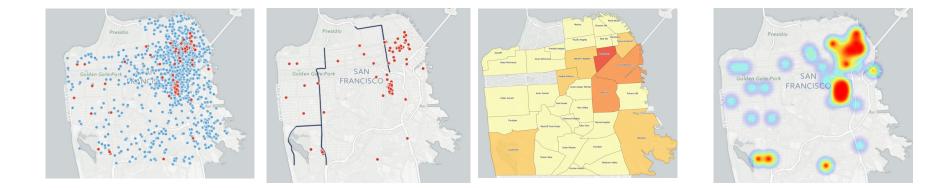

Map layers


Basemap + one or more thematic layers

Mapping Geographic Data


Types of Geographic Data

Aggregating Data to Areas



Counts

Density per sq mile

Rate per 1000 persons

Symbolizing Geographic Data

Shape, Size, Color

Cartography Tips

Color: your best friend or worst enemy

Avoid clutter (data, symbology, text) but provide contrast & context

Interactive maps give us new tools for communicating and exploring geodata

Avoid gimmicky animation or 3D unless it aids the message/goal.

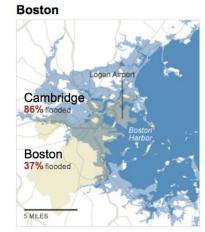
Be aware of the ways that symbology choices, classification schemes and data aggregation may impact the data's message

These issues are important when you are doing exploratory analysis or communication.

The 7 deadly sins data visualisation by James Cheshire

Web Mapping

Interactivity


What Could Disappear

Maps show coastal and low-lying areas that would be permanently flooded, without engineered protection, in three levels of higher seas. Percentages are the portion of dry, habitable land within the city limits of places listed that would be permanently submerged.

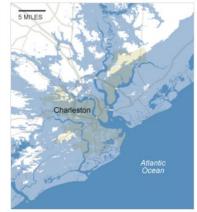
- 🔵 Today's waterways 🛛 🔵
- Land submerged by rising oceans

Flooding extends over much of downtown and many waterfront communities, like Dundalk.

Select sea level rise over current level:

5 feet: Probable level in about 100 to 300 years.

0 feet: Today's sea levels and land area.


The downtown island shrinks to mostly Beacon Hill. Many shore communities are flooded.

Charleston, S.C. 80% flooded

Notes on sea level estimates

25 feet: Potential level in coming centuries, based on historical climate data.

12 feet: Potential level in about 2300 if nations make only moderate pollution cuts.

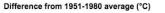
The coast moves up to 10 miles inland. The old city is submerged.

Houston

Jacksonville, Fla. 56% flooded

Los Angeles area

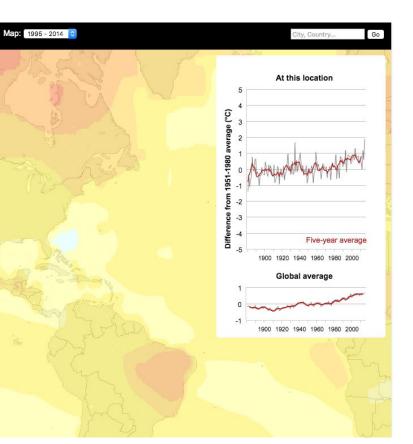
Interactivity New Scientist


YOUR WARMING WORLD

-

The heat is on for the planet as a whole, but what has been happening where you live? Click on the map to find out, or enter a location in the search box at top right.

The initial map shows average temperatures over the past 20 years; use the drop-down menu to see maps for earlier periods.


More: Read our climate change topic guide and learn about the data and graphic.

0 +3 Source: NASA Goddard Institute for Space

Studies Surface Temperature Analysis

-3

Getting Started with Mapping

GIS: Geographic Information System

A geographic information system (GIS) is a system designed to capture, store, manipulate, analyze, manage, and present all types of spatial or geographical data. Wikipedia

Types of GIS

Desktop GIS: ArcGIS, QGIS

Spatial Databases: PostGIS

Programming tools: R, Python

WebGIS: CARTO (formerly CartoDB), ArcGIS Online

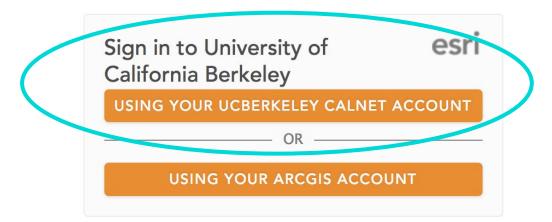
Why ArcGIS Online?

Gentle(ish) learning curve

UCB has license

Limited free version also available

Expanding functionality


Spatial analysis tools

Share interactive web maps and apps

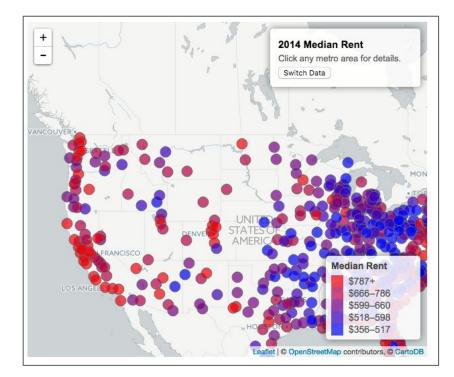
Log in to your ArcGIS Online account

The UCB subdomain is:

http://cal.maps.arcgis.com

Go to the "Get Started with ArcGIS Online" training page:

https://arcg.is/1TS84jr


A quick demo...

Managing data

Creating maps

Adding data from different sources

Geoff Boeing's data: https://raw.githubusercontent.com/gb oeing/data-visualization/master/cens us-rents-2014/rent_latlong.csv

Read about it:

http://geoffboeing.com/2015/11/landscape-us-rents/

Questions?

What we didn't talk about

Latitude, longitude, Map projections & Coordinate reference systems.

• The Earth is not flat, but it is not round either. How that complicates working with geographic data

Digitizing data from a map

Geoprocessing & spatial analysis

Thanks!